
PGAS with Lightweight Threads and the Barnes-Hut Algorithm

Hoang-Vu Dang and Alex Brooks and Nikoli Dryden
Department of Computer Science

University of Illinois at Urbana-Champaign, IL, USA
{hdang8, brooks8, dryden2}@illinois.edu

Marc Snir
Department of Computer Science

University of Illinois at Urbana-Champaign, IL, USA
Mathematics and Computer Science Division

Argonne National Laboratory, IL, USA
snir@mcs.anl.gov

Abstract—We describe a novel runtime system that inte-
grates lightweight threads with a partitioned global address
space (PGAS) mode of computation and apply it to the
Barnes-Hut (BH) algorithm. Our model combines the power
of low-latency, zero-copy, one-sided communication via PGAS
with the power of fast context-switching and user-managed
preemptive lightweight threads into a hybrid interface. We
describe the challenges in designing such a runtime system,
analyze approaches and trade-offs, and present benchmark
results. Our BH application exemplifies the usage of the model
and shows how we can obtain a simple, yet efficient and
scalable, algorithm. Our implementation improves on a state-
of-the-art implementation by up to 13 times. The hybrid
model also improves the performance of various multi-threaded
micro-benchmarks on a distributed memory cluster.

Keywords-Barnes-Hut, PGAS, Lightweight thread, Qthreads

I. INTRODUCTION

Trends indicate that future supercomputers will run hun-
dreds of physical threads per node. [1], [2] predict O(106)
nodes and O(103) cores per node for the road to exascale
computing. They also argue that software stacks must evolve
in order to break current obstacles of scalability. Both inter-
and intra-node parallelism must be exploited effectively for
this to happen. Moreover, problems such as load balancing,
latency hiding, and managing communication worsen at
this scale. In order to implement efficient applications, new
techniques are necessary. One popular development is to
integrate asynchronous task parallelism through lightweight
threads with separate communication libraries. Several li-
braries have implemented this type of programming model,
one being HCMPI [3].

Lightweight thread libraries will be able to take advantage
of the high thread count in future machines. However, the
interaction between the thread package and the communica-
tion library could be problematic: current implementations
of MPI have performance problems when a large number of
threads communicate simultaneously, even with intelligent
Network Interface Controllers (NICs). These issues can be
attributed to course-grain locking and polling overhead, as
demonstrated through a simple communication test where
threads from different MPI processes communicate in pairs
simultaneously (i.e. a ping-pong test). See Figure 1 for the

results for various MPI implementations, testing from 1 to
8 communicating threads for messages with 1 byte to 2 MB
of data.

PGAS programming models can offer several advantages
over MPI. For instance, the use of global arrays results in
programs which are easier to understand. Moreover, PGAS
can leverage RDMA technology. However, PGAS languages
have not surpassed MPI in popularity due to the engineering
efforts required to develop the language and transform ex-
isting applications into PGAS-based implementations. There
is significant skepticism in the user community about the vi-
ability of new languages focused on HPC, hence reluctance
to commit to such languages. Libraries are easier to develop
and maintain than programming languages and can better in-
teroperate with current code. Further, libraries implemented
in high-level languages can leverage the language features
so as to appear as language extensions.

We have designed and developed a new C++ runtime
library which evolved from our previous work on the Barnes-
Hut algorithm using a PGAS model [4], [5]. Our runtime
system library provides an intuitive layer of abstraction over
PGAS and asynchronous parallelism. The abstraction allows
a simple, yet efficient implementation of the Barnes-Hut
algorithm on distributed memory, multi-node clusters. Our
experiments also show significant improvements for multi-
threaded micro benchmarks over GASNet and MPI.

The rest of the paper is organized as follows. Sections
II and III describe our PGAS programming model and
its current implementation. Section IV describes the n-
body simulation problem and the Barnes-Hut algorithm. A
state-of-the-art multi-threaded algorithm and implementation
in comparison to our method are described in Section V.
Section VI discusses experiments and evaluates our imple-
mentation of the Barnes-Hut algorithm. Section VII provides
some related work. Finally, Section VIII concludes the paper
and discusses future work.

II. PGAS AND LIGHTWEIGHT THREAD RUNTIME

We describe in this section the design of PPL, a C++
PGAS parallel libary. PPL is designed for abstracting a
model of computation that combines a communication layer
which uses one-sided communication, a threading model

PPL provides an abstract cache class for which any
caching policy may be implemented in software. The
caching class provides the following operations: adding an
object to the cache, accessing or updating a cache entry, and
removing an object from the cache.

In order to provide an opportunity for optimization with
regards to accessing remote data, PPL specifies three types
of get operations for global pointers: lget, rget, and get.
First, lget is simply a local get; it is assumed there is a
cached copy of the gptr. The corresponding cache entry
is returned, otherwise an exception is thrown. Next, rget
ignores any cached copies of the gptr and always requests
a new copy from the corresponding remote node. This will
update the old cached copy and return the new reference
once the request is complete. Finally, get is a fail-safe
generic get operation. If there exists a cached copy of the
gptr, then the reference is returned. Otherwise, a request
for a new copy is sent to the corresponding remote node,
updating and returning the new cached copy once the request
is complete. Currently there are no changes to the cache
when a put operation is performed, for simplicity.

III. PPL IMPLEMENTATION

In this section, we describe implementations of the dif-
ferent PPL modules.

A. Threading Model

In most cases, supporting a large number of threads can be
expensive, especially when context-switching is performed
regularly. Although the PPL threading model supports any
threading library, it is expected that using a lightweight task-
based threading model will be more efficient than a standard
system-level threading model (i.e. POSIX threads). By using
a lightweight task-based threading model, spawning and
context-switching latencies are reduced. Further, applica-
tions and libraries are unable to explicitly wake system-
level threads, since the scheduler is completely dependent
on the operating system. Lightweight task-based models
typically implement their own scheduler, which includes a
load-balancer and mechanisms for preempting and enabling
tasks. For these reasons, our first threading model imple-
mentation uses a lightweight task-based model, specifically
the Qthreads library [8].

Qthreads provides a synchronization primitive which al-
lows tasks to wait on the status of a single bit in memory
(i.e. a full/empty bit). This method was originally seen in
the Denelcor HEP system for guaranteeing correct ordering
of memory operations [9] and is still seen in the Cray XMT
architecture as a form of low-overhead synchronization
for simple parallel programming models [10]. In order to
efficiently couple communication completion with thread
scheduling, PPL implements sync using the full/empty-bit
primitive provided by Qthreads. This ensures that a task

waiting for communication completion is preempted and
efficiently rescheduled when it can continue execution.

Qthreads provides the ability to adjust the number of
workers (threads) and the number of task queues (shep-
herds), as well as provides automatic load-balancing via task
stealing between shepherds. In PPL, we fix the number of
shepherds and assign one worker per shepherd.

B. Communication Layer

In order to efficiently support a large lightweight thread
count with blocking communication calls, it is necessary
to offload polling to a separate thread (or threads). In
our implementation of the PPL communication layer, we
do this by splitting the execution of communication calls
between the calling thread and a communication engine
(CE). The communication engine is defined as a dedicated
service thread that executes parts of the communication code
which must be executed atomically. This avoids the need for
locking and mutual exclusion, which is an important rea-
son why thrashing exists when many threads communicate
simultaneously. Further, this design facilitates leveraging
more intelligent NICs, since functions can shift between
the NIC and CE without affecting other components. We
implement the communication layer assuming that a NIC is
serviced by a single CE. As modern NICs provide multiple
independent virtual interfaces, this assumption is not too
restrictive. Larger systems may require multiple CEs, but
a suitable partition of traffic can ensure that there is little or
no synchronization between multiple CEs.

Communicating threads submit requests to the CE through
a request container (RC). When a thread performs a block-
ing communication call (i.e. memput or memget), the
request is submitted to the RC and the thread waits on the
associated handler for completion. When a communication
request is complete, the CE notifies the scheduler by chang-
ing the state of the handler to re-enable the task.

Since communication is completely offloaded to the CE,
the scheduler is able to better manage tasks which are
waiting for communication requests. Progress on a request
continues even if a task is preempted. Therefore, in the
general case, it is most efficient to yield a task once it
submits a request to the RC, provided that there are other
tasks waiting to be scheduled. Likewise, it is ideal to
attempt to reschedule a task once notified by the CE that
a communication request is complete.

The communication library we use initially for PPL is
GASNet [11], in order to simplify development and provide
portability.

Through basic testing, we have seen that, compared to the
latency of communication with a small amount of data, the
overhead of using the full/empty-bit primitive to preempt
and re-enable tasks is relative large. In an attempt to hide
some of this latency, we use two Pthreads to implement
the CE: one thread is dedicated to executing the GASNet

upon the problem size.
Our performance increase primarily comes from improve-

ments in the force computation phase. The speedup for this
phase compared to UPCR-BH is shown in Figure 7b, and
closely matches the total execution time speedup seen above.
This is primarily due to the use of lightweight threads to
overlap computation more efficiently, and hence make better
use of the available processor resources.

C. One-sided Operation Results

To demonstrate the scalability of PPL’s design, we con-
ducted micro-benchmark experiments to evaluate the perfor-
mance of one-sided communication for PPL in comparison
with MPI+Pthreads and GASNet+Pthreads. The experiments
perform large amounts of remote put and get operations for
varying size data transfers and varying number of threads.
The experiments were run on the Taub system. Each thread
is given an identification and paired with a thread on the
other node. Each pair of threads performs puts and gets using
separate chunks of the global heap.

MVAPICH2 version 2.0 is used for the MPI+Pthreads
experiment and GASNet version 1.22.4 for the GAS-
Net+Pthreads experiment. For the MPI+Pthreads bench-
mark, an MPI memory window is used for each pair of
threads. The synchronization is done on each window after
each put and get to ensure remote completion. There is
no explicit synchronization for GASNet since we use the
blocking put and get syntax. GASNet’s specification ensures
remote completion when these functions return.

Figures 8a and 8b show the results for put and get using
1 thread per node, respectively. As expected, PPL results are
worse than MPI+Pthreads and GASNet+Pthreads due to the
extra overhead of managing communication and lightweight
tasks. This overhead is merely 2-3 µsec in both cases, thus
our implementation of the PPL communication engine has
relatively low overhead.

Figures 8c and 8d show the results for put and get using
10 threads per node, respectively. For all data sizes, PPL
performs better than GASNet+Pthreads due to better man-
agement of simultaneous communication operations. This
holds true for MPI+Pthreads up to 16 KB. There are a few
reasons which could explain why MPI+Pthreads performs
better at larger sizes. First, for communication larger than
a certain threshold, many MPI implementations such as
MVAPICH split messages into pieces and switch to another
mode of communication, resulting in smaller overall latency
for transfer setup. This approach proves to scale better and
achieve higher performance for large messages on clusters
with InfiniBand interconnects [16]. Second, the method
MVAPICH uses to poll for communication completion is
different from PPL. Specifically, MPI polls the network
for any communication completion from nearly any MPI
function invocation. This results in identifying completed
communication quicker, but at the same time increases

overhead of all associated MPI functions. On the other hand,
PPL currently only supports polling specific communication
requests due to GASNet’s specification on network polling.
It is expected that the advantage of MVAPICH over PPL for
large messages will disappear when we implement PPL over
the same communication layer that is used by MVAPICH.

Nevertheless, when the communication mode is the same
(i.e. compared to GASNet+Pthreads), PPL consistently per-
forms better with an average speedup of 1.5 times. Up to 16
KB, PPL achieves an average speedup of 2.8 times compared
to MPI+Pthreads.

VII. RELATED WORK

On large scale systems, hybrid programming models have
become part of mainstream research in recent years. A very
common approach is to incorporate an MPI implementation
with a threading library such as OpenMP [17], Habanero-C
[3], and SMPSs [18]. MPI implementers are also looking
for improving MPI performance by integrating threading
libraries with the communication layer [19]. The hybrid
MPI+Pthread library approach has shown improvements
for several algorithms on multi-core distributed memory
clusters. n-body simulations are among those studied, as
shown in [20], [21]. These implementations, however, are
based on the locally essential tree initially proposed in
[14], which does not allow overlapping computation and
communication very effectively.

PGAS programming languages such as Chapel [22] and
X10 [23] have dedicated threading mechanisms, while
UPC [7] and CAF [6] have added multi-threading support
through language extensions. Chapel and X10 do not provide
lightweight threading support; however, several efforts have
been made to add lightweight threading support, such as in
[24], [25]. Since lightweight thread features are added later
to the design, they are still adhoc and not widely adopted.
The PPL PGAS library natively supports lightweight threads
and can be easily extended to any threading library through
class inheritance.

We are not aware of any PGAS and lightweight thread
implementation of the Barnes-Hut algorithm. Several com-
parisons to different BH implementations with other pro-
gramming models, such as Charm++ [26] and PEPC [27],
have been investigated in [5], [4].

VIII. CONCLUSION

We have presented the design and an implementation of
PPL, a new C++ parallel runtime system which provides
an intuitive abstraction over the PGAS model and asyn-
chronous lightweight threads. We have demonstrated how
PPL, implemented by integrating a PGAS communication
layer with the Qthreads lightweight threading model, can
be used to implement a parallel Barnes-Hut implementation
easily and efficiently. Further, our BH implementation scales
well for large thread counts and significantly out-performs

jbullock
Typewritten Text

[8] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An
API for programming with millions of lightweight threads,”
in Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 2008, pp. 1–8.

[9] B. J. Smith, “Architecture and applications of the HEP
multiprocessor computer system,” in 25th Annual Technical
Symposium. International Society for Optics and Photonics,
1982, pp. 241–248.

[10] D. Mizell and K. Maschhoff, “Early experiences with large-
scale Cray XMT systems,” in Parallel & Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–9.

[11] D. Bonachea, “GASNet specification, v1. l,” Univ. California,
Berkeley, Tech. Rep. UCB/CSD-02-1207, 2002.

[12] M. M. Michael and M. L. Scott, “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms,”
in Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing. ACM, 1996, pp. 267–
275.

[13] A. Righi, “umalloc,” http://minirighi.sourceforge.net/html/
umalloc 8c.html, accessed: 2014-10-17.

[14] J. K. Salmon, “Parallel hierarchical n-body methods,” Ph.D.
dissertation, California Institute of Technology, 1991.

[15] S. Aarseth, M. Henon, and R. Wielen, “A comparison of
numerical methods for the study of star cluster dynamics,”
Astronomy and Astrophysics, vol. 37, pp. 183–187, 1974.

[16] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen, “Design and imple-
mentation of MPICH2 over InfiniBand with RDMA support,”
in Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International. IEEE, 2004, p. 16.

[17] R. Rabenseifner, G. Hager, G. Jost, and R. Keller, “Hybrid
MPI and OpenMP parallel programming,” in PVM/MPI,
2006, p. 11.

[18] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero,
“Overlapping communication and computation by using a
hybrid MPI/SMPSs approach,” in Proceedings of the 24th
ACM International Conference on Supercomputing. ACM,
2010, pp. 5–16.

[19] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance
evaluation of sparse matrix multiplication kernels on Intel
Xeon Phi,” in Parallel Processing and Applied Mathematics.
Springer, 2014, pp. 559–570.

[20] T. V. T. Duy, K. Yamazaki, K. Ikegami, and S. Oy-
anagi, “Hybrid MPI-OpenMP paradigm on SMP clusters:
MPEG-2 encoder and n-body simulation,” arXiv preprint
arXiv:1211.2292, 2012.

[21] H. Rein and S.-F. Liu, “REBOUND: an open-source multi-
purpose n-body code for collisional dynamics,” arXiv preprint
arXiv:1110.4876, 2011.

[22] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Par-
allel programmability and the Chapel language,” Interna-
tional Journal of High Performance Computing Applications,
vol. 21, no. 3, pp. 291–312, 2007.

[23] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-
oriented approach to non-uniform cluster computing,” Acm
Sigplan Notices, vol. 40, no. 10, pp. 519–538, 2005.

[24] K. B. Wheeler, R. C. Murphy, D. Stark, and B. L. Chamber-
lain, “The Chapel tasking layer over qthreads,” CUG 2011,
2011.

[25] J. Paudel, O. Tardieu, and J. N. Amaral, “Hybrid parallel
task placement in X10,” in Proceedings of the third ACM
SIGPLAN X10 Workshop. ACM, 2013, pp. 31–38.

[26] L. V. Kale and S. Krishnan, CHARM++: a portable concur-
rent object oriented system based on C++. ACM, 1993,
vol. 28, no. 10.

[27] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, and
P. Gibbon, “A massively parallel, multi-disciplinary barnes–
hut tree code for extreme-scale n-body simulations,” Com-
puter Physics Communications, vol. 183, no. 4, pp. 880–889,
2012.

jbullock
Typewritten Text
This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

